
Section B4:  Unit Roots and Cointegration Analysis  
 
B4.1.  Cointegrated Time Series 
Some pairs of economic time series (e.g., wholesale and retail prices of a single commodity) may 
be expected to follow similar patterns of change over time.  Even when short-term conditions 
cause such series to diverge, economic and/or policy dynamics will eventually force them back 
into equilibrium.  In the economics literature, such pairs of data series are called cointegrated 
series. 
 
To analyze cointegrated time series, we conceptualize them as stochastic processes, i.e., 
processes subject to randomness, and define properties of these processes.  The notation in this 
section differs from that of Sections 1 through 3. 
 
B4.2.  Definitions of Short and Long Memory Stochastic Processes 
We begin by defining some properties of stochastic processes.  The stochastic process {𝜀𝜀𝑡𝑡} is 
stationary (or strictly stationary) if, for every collection of time indices �𝑡𝑡𝑗𝑗�𝑗𝑗=1

𝑛𝑛
, the joint 

distribution of �𝜀𝜀𝑡𝑡𝑗𝑗�𝑗𝑗=1
𝑛𝑛

 is the same as the joint distribution of   �𝜀𝜀𝑡𝑡𝑗𝑗+ℎ�𝑗𝑗=1
𝑛𝑛

 for all integers ℎ ≥ 1.  

It follows that the 𝜀𝜀𝑡𝑡 are identically distributed. 
 
Because strict stationarity is defined in terms of the joint distributions of subsets of the stochastic 
process, the strict stationary of an empirical data series is often difficult to establish.  Many data 
series, however, are clearly nonstationary, e.g., series that clearly display trends or cycles. 
 
Covariance stationarity is defined in terms of the moments of the stochastic process and is thus 
easier to establish for an empirical data series.  The stochastic process {𝜀𝜀𝑡𝑡} is covariance 
stationary if, for some constant 𝑐𝑐, 
 

            𝐸𝐸[𝜀𝜀𝑡𝑡] = 𝑐𝑐, 
           𝑉𝑉𝑉𝑉𝑉𝑉[𝜀𝜀𝑡𝑡] = 𝜎𝜎𝜀𝜀2 (constant variance), and 
            𝐶𝐶𝐶𝐶𝐶𝐶�𝜀𝜀𝑡𝑡,𝜀𝜀𝑡𝑡+ℎ� = 𝑓𝑓(ℎ), for ℎ ≥ 1. 

(B4.2.1) 

 
If a strictly stationary process has a finite second moment, it is covariance stationary.  A 
covariance stationary series, however, need not be stationary. 
 
A covariance stationary process {𝜀𝜀𝑡𝑡} is a white noise process if  
 

            𝐸𝐸[𝜀𝜀𝑡𝑡] = 0, 
           𝐸𝐸[𝜀𝜀𝑡𝑡𝜀𝜀𝑡𝑡−ℎ] = 0 for ℎ ≠ 0 (uncorrolated), and 
          𝑉𝑉𝑉𝑉𝑉𝑉[𝜀𝜀𝑡𝑡] = 𝜎𝜎𝜀𝜀2 (constant variance). 

(B4.2.2) 

 
As 𝑡𝑡 → ∞, {𝜀𝜀𝑡𝑡} will frequently cross the horizontal axis and frequently return to values near its 
mean 0.  White noise is used to model unexplained short-term movements in a data series. 
 
Let {𝜀𝜀𝑡𝑡} be a white noise process, and let 



 
 

𝑥𝑥𝑡𝑡 = �𝑎𝑎𝑗𝑗𝜀𝜀𝑡𝑡−𝑗𝑗

∞

𝑗𝑗=0

. (B4.2.3) 

 
If 𝑎𝑎𝑗𝑗 → 0 as 𝑗𝑗 → ∞, then {𝑥𝑥𝑡𝑡} is a short memory process.  When {𝑥𝑥𝑡𝑡} is a short memory process 
with constant mean and finite variance, we say that {𝑥𝑥𝑡𝑡} is integrated of order 0 and write 
{𝑥𝑥𝑡𝑡}~𝐼𝐼(0). White noise, for example, is a short memory process.  In a typical empirical time 
series generated by a short memory process, autocorrelation is present but limited.  When 𝑎𝑎𝑗𝑗 ↛ 0 
as 𝑗𝑗 → ∞, {𝑥𝑥𝑡𝑡} is a long memory process.   
 
 
B4.2.  Analyzing Short and Long Memory Stochastic Processes 
If {𝑦𝑦𝑡𝑡} is a long memory process, an old shock to the system (𝜀𝜀𝑡𝑡−ℎ, where h is large) still has an 
effect on 𝑦𝑦𝑡𝑡.  If, however, {𝑦𝑦𝑡𝑡} is a short memory process, the effect of 𝜀𝜀𝑡𝑡−ℎ on 𝑦𝑦𝑡𝑡 diminishes 
quickly as h increases, i.e., the process “forgets” old shocks.  Although short memory processes 
are usually serially correlated, the covariance of the values between two time periods diminishes 
as the distance between the time periods grows (𝐶𝐶𝐶𝐶𝐶𝐶[𝑦𝑦𝑡𝑡−ℎ ,𝑦𝑦𝑡𝑡] → 0 as ℎ → ∞). 
 
Differencing a Long Memory Process 
In many cases, differencing a long memory process produces a short memory process.  Let 
 

 𝑦𝑦𝑡𝑡 = 𝑦𝑦𝑡𝑡−1 + 𝜀𝜀𝑡𝑡, (B4.2.4) 
 
where 𝜀𝜀𝑡𝑡 is a white noise process.  Then, although {𝑦𝑦𝑡𝑡} is a long memory process, the differenced 
process 
 

 ∆𝑦𝑦𝑡𝑡 = 𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1 = 𝜀𝜀𝑡𝑡 (B4.2.5) 
 
is a short memory process.  When {𝑦𝑦𝑡𝑡} is a long memory process and  {∆𝑦𝑦𝑡𝑡}  is a short memory 
process, we say that  {𝑦𝑦𝑡𝑡}  is integrated of order 1 and write  {𝑦𝑦𝑡𝑡} ~𝐼𝐼(1). 
 
Cointegration 
Before presenting a rigorous definition of cointegration, we state some facts about linear 
combinations of 𝐼𝐼(0) and 𝐼𝐼(1) processes.  Let 𝑎𝑎 and 𝑏𝑏 be constants. 
 

a) If {𝑥𝑥𝑡𝑡}~𝐼𝐼(0), then 𝑎𝑎 + 𝑏𝑏𝑥𝑥𝑡𝑡 is 𝐼𝐼(0). 
 

b) If {𝑥𝑥𝑡𝑡}~𝐼𝐼(1), then 𝑎𝑎 + 𝑏𝑏𝑥𝑥𝑡𝑡 is 𝐼𝐼(1). 
 

c) A linear combination of short memory processes is a short memory process, i.e., if 
{𝑥𝑥𝑡𝑡}~𝐼𝐼(0), and {𝑦𝑦𝑡𝑡}~𝐼𝐼(0), then 𝑎𝑎𝑥𝑥𝑡𝑡 + 𝑏𝑏𝑦𝑦𝑡𝑡 is 𝐼𝐼(0).   
 

d) A linear combination of a short memory process and a long memory process is a long 
memory process, i.e., if {𝑥𝑥𝑡𝑡}~𝐼𝐼(0), and {𝑦𝑦𝑡𝑡}~𝐼𝐼(1), then 𝑎𝑎𝑥𝑥𝑡𝑡 + 𝑏𝑏𝑦𝑦𝑡𝑡 is 𝐼𝐼(1).   
 



Definition of Cointegration 
A linear combination of two long memory processes is a long memory process unless the two 
processes “share” the same long-term memory.  Suppose {𝑥𝑥𝑡𝑡}~𝐼𝐼(1) and {𝑦𝑦𝑡𝑡}~𝐼𝐼(1).  If there 
exist constants m, a, and b such that 

 
1. 𝑚𝑚 + 𝑎𝑎𝑥𝑥𝑡𝑡 + 𝑏𝑏𝑦𝑦𝑡𝑡 is 𝐼𝐼(0) and 
2. 𝐸𝐸[𝑚𝑚 + 𝑎𝑎𝑥𝑥𝑡𝑡 + 𝑏𝑏𝑦𝑦𝑡𝑡] = 0,  

 
then {𝑥𝑥𝑡𝑡} and {𝑦𝑦𝑡𝑡} are cointegrated.   
 
Intuitively, because cointegrated long memory series share the same long-term memory, their 
long-term memories cancel out in the linear combination, leaving a short memory series.  In the 
econometrics literature, the term “cointegrated” is commonly used even when the relationship 
between the two series is not strictly linear (e.g., it may be log-linear). 
 
Problem of Spurious Regression 
In time series regression analysis, we assume that one time series can be expressed as a linear 
combination of other time series, modulo an error term.  When the time series have long 
memories, we are assuming cointegration. 
 
Traditional regression diagnostics can be deceptive in the presence of long memory series.  In 
particular, we may see high values of 𝑅𝑅2 and low standard errors, leading to inflated t-statistics.   
There is a high probability of regression diagnostics indicating a relationship between two 
independent, randomly generated 𝐼𝐼(1) series (Newbold and Granger 1974).  Differencing the 
series may eliminate this problem but allows only analysis of short-run changes.  Use of 
additional statistical tests and diagnostics enables us to analyze long-run relationships between 
cointegrated series. 
 
 
B4.3.  Testing for Unit Roots 
 
Definition of a Unit Root Process in the Linear Case 
If  
 

 𝑦𝑦𝑡𝑡 = 𝛼𝛼 + 𝜌𝜌𝑦𝑦𝑡𝑡−1 + 𝜀𝜀𝑡𝑡, (B4.3.1) 
 
where 𝐸𝐸(𝜀𝜀𝑡𝑡|𝑦𝑦𝑡𝑡−1,𝑦𝑦𝑡𝑡−2, … , 𝑦𝑦0) = 0,  then {𝑦𝑦𝑡𝑡} has a unit root if and only if |𝜌𝜌| = 1. 
 
When 𝜌𝜌 = 1 and 𝛼𝛼 = 0, {𝑦𝑦𝑡𝑡} is a random walk without drift.  When 𝜌𝜌 = 1 and 𝛼𝛼 ≠ 0, {𝑦𝑦𝑡𝑡} is a 
random walk with drift (Figure 5).  Unit root processes are long memory processes. 
 
Testing 𝐻𝐻0:  |𝜌𝜌| = 1 
Observe that  
 

• When 𝜌𝜌 < 0, {𝑦𝑦𝑡𝑡} is negatively autocorrelated, which is rare in economic time series. 
 



• When |𝜌𝜌| > 1, {𝑦𝑦𝑡𝑡} is blowing up (positive or negative). 
 

So we are usually interested in testing  
 

 𝐻𝐻0:𝜌𝜌 = 1  vs.  𝐻𝐻1: 0 < 𝜌𝜌 < 1. (B4.3.2) 
 
Dickey-Fuller Test for a Unit Root 
We set 𝜃𝜃 = 𝜌𝜌 − 1.  Then 
 

∆𝑦𝑦𝑡𝑡 = 𝛼𝛼 + 𝜌𝜌𝑦𝑦𝑡𝑡−1 − 𝑦𝑦𝑡𝑡−1 + 𝜀𝜀𝑡𝑡 
(B4.3.3) 

= 𝛼𝛼 + 𝜃𝜃𝑦𝑦𝑡𝑡−1 + 𝜀𝜀𝑡𝑡 
 
Now we can test 
 

 𝐻𝐻0:𝜃𝜃 = 0  vs.  𝐻𝐻1:𝜃𝜃 < 0. (B4.3.4) 
 
We can compute the usual t-statistic for the hypothesis test.  However, under 𝐻𝐻0, the t-statistic is 
not asymptotically normal.  Dickey and Fuller (1979) tabulated the critical values for the 
asymptotic distribution, which is known as the Dickey-Fuller (DF) distribution.   
 
Asymptotic Critical Values for the Dickey-Fuller (DF) Unit Root Test 

 

Significance Level 1% 2.5% 5% 10% 

Critical Value -3.43 -3.12 -2.86 -2.57 

 
 
We reject 𝐻𝐻0:𝜃𝜃 = 0 against the alternative 𝐻𝐻1:𝜃𝜃 < 0 if the t-statistic 𝑡𝑡𝜃𝜃� < 𝑐𝑐, where c is one of 
the critical values above. 
 
If 𝑡𝑡𝜃𝜃�  is strongly negative, we have evidence for rejecting the hypothesis that {𝑦𝑦𝑡𝑡}~𝐼𝐼(1) in favor 
of the hypothesis that {𝑦𝑦𝑡𝑡}~𝐼𝐼(0).  Otherwise, we suspect that {𝑦𝑦𝑡𝑡} has a unit root, and spurious 
regression is a concern. 
 
Application of the asymptotic critical values for the DF test requires a large sample, i.e., a long 
time series.  Critical values for small samples have also been tabulated and are available in 
statistical software packages such as SAS and R.  
 
The power of a hypothesis test is the probability of not committing a Type II error.  Type II error 
is failing to reject a false null hypothesis.  Unit root tests have been criticized for their low 



power.  There is a relatively high probability that these tests may indicate a unit root in a series 
with no unit roots.  In addition to the DF test, other tests for autocorrelation and unit roots are 
discussed in the literature (e.g., Ljung-Box, Durbin-Watson).  The DF test is popular because it is 
simple and robust.  
 
 
The Cointegrating Parameter 
Suppose we have determined that {𝑦𝑦𝑡𝑡} and {𝑥𝑥𝑡𝑡} both have unit roots.  
 

• If {𝑦𝑦𝑡𝑡} and {𝑥𝑥𝑡𝑡} are not cointegrated, regression of one series on the other may be 
“spurious.”  
 

• If {𝑦𝑦𝑡𝑡} and {𝑥𝑥𝑡𝑡} are cointegrated, we are interested in the cointegrating parameter 𝛽𝛽 such 
that 𝑦𝑦𝑡𝑡 − 𝛽𝛽𝑥𝑥𝑡𝑡  is an 𝐼𝐼(0) process. 

 
When we know or hypothesize the cointegrating parameter 𝛽𝛽, we can set 𝑧𝑧𝑡𝑡 = 𝑦𝑦𝑡𝑡 − 𝛽𝛽𝑥𝑥𝑡𝑡 and 
perform the standard DF test on the series {𝑧𝑧𝑡𝑡}.  If we find evidence that {𝑧𝑧𝑡𝑡} has a unit root, we 
may conclude that {𝑦𝑦𝑡𝑡} and {𝑥𝑥𝑡𝑡} are not cointegrated.  (In practice, we may also consider that our 
hypothesized value of 𝛽𝛽 may be incorrect.)  The null hypothesis in the DF test is that {𝑧𝑧𝑡𝑡} has a 
unit root, i.e., that {𝑦𝑦𝑡𝑡} and {𝑥𝑥𝑡𝑡} are not cointegrated. 
 
When {𝑦𝑦𝑡𝑡} and {𝑥𝑥𝑡𝑡} are cointegrated, the OLS estimator 𝛽̂𝛽 from the regression  
 

 𝑦𝑦𝑡𝑡 = 𝛼𝛼� + 𝛽̂𝛽𝑥𝑥𝑡𝑡 + 𝜀𝜀𝑡𝑡 (B4.3.5) 
 
is a consistent estimator of 𝛽𝛽.  However, under the null hypotheses that 𝑧𝑧𝑡𝑡 = 𝑦𝑦𝑡𝑡 − 𝛽𝛽𝑥𝑥𝑡𝑡 has a unit 
root, we must run a spurious regression to obtain 𝛽̂𝛽. 
 
To perform the DF test with an estimated value of 𝛽𝛽, we set  
 

 𝑢𝑢�𝑡𝑡 = 𝑦𝑦𝑡𝑡 − 𝛽̂𝛽𝑥𝑥𝑡𝑡, (B4.3.6) 
 
where 𝛽̂𝛽 is the OLS estimator of 𝛽𝛽.  Davidson and McKinnon (1993) tabulated critical values for 
the DF test for the presence of a unit root in the series {𝑢𝑢�𝑡𝑡}.  
 
Asymptotic Critical Values for the Dickey-Fuller (DF) Unit Root Test with Estimated 𝜷𝜷 

 

Significance Level 1% 2.5% 5% 10% 

Critical Value -3.90 -3.59 -3.34 -3.04 

 



 
To perform a cointegration test with an estimated value of 𝛽𝛽, we run the regression 
 

 ∆𝑢𝑢�𝑡𝑡 = 𝜏𝜏 + 𝜃𝜃𝑢𝑢�𝑡𝑡−1 + 𝜀𝜀𝑡𝑡 (B4.3.7) 
 
and test 𝐻𝐻0:𝜃𝜃 = 0 against the alternative 𝐻𝐻1:𝜃𝜃 < 0.  If the t-statistic is below the critical value, 
we have evidence that {𝑦𝑦𝑡𝑡} and {𝑥𝑥𝑡𝑡} are cointegrated.  When 𝛽𝛽 is estimated, we must get a t-
statistic more strongly negative to show cointegration.  This is because OLS tends to produce 
residuals that look like an 𝐼𝐼(0) sequence even when {𝑦𝑦𝑡𝑡} and {𝑥𝑥𝑡𝑡} are not cointegrated. 
 
Cointegration Test for Series with Linear Time Trends 
Suppose {𝑦𝑦𝑡𝑡} and {𝑥𝑥𝑡𝑡} display linear time trends.  The trends need not be the same, e.g, {𝑦𝑦𝑡𝑡} may 
be increasing faster than {𝑥𝑥𝑡𝑡}.  Let 𝑦𝑦𝑡𝑡 = 𝛾𝛾𝑡𝑡 + 𝑔𝑔𝑡𝑡, and let 𝑥𝑥𝑡𝑡 = 𝜁𝜁𝜁𝜁 + 𝑧𝑧𝑡𝑡.  The stochastic portions of 
the series, {𝑔𝑔𝑡𝑡} and {𝑧𝑧𝑡𝑡}, may be cointegrated.  We may remove the trends from 𝑥𝑥𝑡𝑡 and 𝑦𝑦𝑡𝑡 and 
then test for unit roots and the cointegration of {𝑔𝑔𝑡𝑡} with {𝑧𝑧𝑡𝑡}.  Alternatively, we may run the 
regression 
 

 𝑦𝑦𝑡𝑡 = 𝛼𝛼� + 𝜂̂𝜂𝑡𝑡 + 𝛽̂𝛽𝑥𝑥𝑡𝑡 (B4.3.8) 
 
and apply the DF test to the residuals 𝑒̂𝑒𝑡𝑡.  In this case, we note the following: 
 

• The asymptotic critical values differ from those of the standard DF test and are given in 
the table below. 
 

• If we find that {𝑔𝑔𝑡𝑡} and {𝑧𝑧𝑡𝑡} are cointegrated with cointegration parameter 𝛽𝛽, this means 
that 𝑦𝑦𝑡𝑡 − 𝛽𝛽𝑥𝑥𝑡𝑡 is not an 𝐼𝐼(1) process. 
 

• It’s possible that 𝑦𝑦𝑡𝑡 − 𝛽𝛽𝑥𝑥𝑡𝑡 will still have a linear time trend. 
 
 
Asymptotic Critical Values for the Cointegration Test with Linear Time Trends 

 

Significance Level 1% 2.5% 5% 10% 

Critical Value -4.32 -4.03 -3.78 -3.50 

 
 
B4.4.  Series with Complex Autocorrelation Structures 
 



If we suspect that {𝑦𝑦𝑡𝑡}~𝐼𝐼(1) and that {𝑦𝑦𝑡𝑡} has a complex autocorrelation structure, we may 
include lags of ∆𝑦𝑦𝑡𝑡 in the autoregressive model on which we base the unit root test.  In this case, 
we apply the augmented Dickey-Fuller (ADF) test.  
 
We use the general model 
 

 
∆𝑦𝑦𝑡𝑡 = 𝛼𝛼 + 𝜃𝜃𝑦𝑦𝑡𝑡−1 + �𝛾𝛾𝑖𝑖∆𝑦𝑦𝑡𝑡−𝑖𝑖

𝑝𝑝

𝑖𝑖=1

+ 𝜀𝜀𝑡𝑡. (B4.4.1) 

 
To find the appropriate value of p, we may set p = 0 and then increase p until 𝛾𝛾𝑝𝑝 is statistically 
insignificant.  We can use an ordinary t- test to test 𝐻𝐻0: 𝛾𝛾𝑝𝑝 = 0 (or an F test for the joint 
significance of the 𝛾𝛾𝑖𝑖).  As in the DF test, we test 
 

 𝐻𝐻0:𝜃𝜃 = 0 vs. 𝐻𝐻1:𝜃𝜃 < 0. (B4.4.2) 
 
The asymptotic critical values for the ADF test are the same as those for the DF test.  Under 𝐻𝐻0, 
{∆𝑦𝑦𝑡𝑡} follows an autoregressive model of order p; under 𝐻𝐻1, {∆𝑦𝑦𝑡𝑡} follows an autoregressive 
model of order 𝑝𝑝 + 1. 
 
Vector Autoregressive (VAR) Models 
If {𝑥𝑥𝑡𝑡} and {𝑦𝑦𝑡𝑡} are autoregressive series of order p, we may fit the autoregressive models 
 

𝑦𝑦𝑡𝑡 = 𝛿𝛿0 + �𝛼𝛼𝑖𝑖𝑦𝑦𝑡𝑡−𝑖𝑖

𝑝𝑝

𝑖𝑖=1

+ �𝛽𝛽𝑖𝑖𝑥𝑥𝑡𝑡−𝑖𝑖

𝑝𝑝

𝑖𝑖=1

+ 𝜀𝜀𝑡𝑡, 

and                     (B4.4.3) 

𝑥𝑥𝑡𝑡 = 𝛾𝛾0 + �𝜏𝜏𝑖𝑖𝑦𝑦𝑡𝑡−𝑖𝑖

𝑝𝑝

𝑖𝑖=1

+ �𝜑𝜑𝑖𝑖𝑥𝑥𝑡𝑡−𝑖𝑖

𝑝𝑝

𝑖𝑖=1

+ 𝑢𝑢𝑡𝑡 . 

 
The inclusion of the lagged values helps ensure that the residuals are not strongly autocorrelated.  
VAR models are often used for short-term forecasting. 
 
Error Correction Models 
Suppose we have established that {𝑦𝑦𝑡𝑡} and {𝑥𝑥𝑡𝑡} are cointegrated with 
 

 𝑦𝑦𝑡𝑡 = 𝛽𝛽𝑥𝑥𝑡𝑡 + 𝜀𝜀𝑡𝑡. (B4.4.4) 
 
We can use an error correction model to study the short term dynamics of the relationship 
between {𝑦𝑦𝑡𝑡} and {𝑥𝑥𝑡𝑡}.  For example, consider the model 
 

 ∆𝑦𝑦𝑡𝑡 = 𝛼𝛼0 + 𝛾𝛾0∆𝑥𝑥𝑡𝑡 + 𝛿𝛿(𝑦𝑦𝑡𝑡−1 − 𝛽𝛽𝑥𝑥𝑡𝑡−1) + 𝜀𝜀𝑡𝑡, (B4.4.5) 
 
where 𝛿𝛿 < 0.  The term 𝛿𝛿(𝑦𝑦𝑡𝑡−1 − 𝛽𝛽𝑥𝑥𝑡𝑡−1) is called the error correction term.  The parameter 𝛿𝛿 
indicates the speed at which {𝑦𝑦𝑡𝑡} and {𝑥𝑥𝑡𝑡} return to their equilibrium relationship after a “shock” 



creates a short-term disturbance in this relationship.  Note that, if 𝑦𝑦𝑡𝑡−1 < 𝛽𝛽𝑥𝑥𝑡𝑡−1, then 𝑥𝑥𝑡𝑡−1 is 
higher than its equilibrium value.  In this case, the inclusion of the 𝛿𝛿 term will increase the 
model-based estimate of ∆𝑦𝑦𝑡𝑡.  Conversely, if 𝑦𝑦𝑡𝑡−1 > 𝛽𝛽𝑥𝑥𝑡𝑡−1, the error correction term 
𝛿𝛿(𝑦𝑦𝑡𝑡−1 − 𝛽𝛽𝑥𝑥𝑡𝑡−1) will decrease the estimated value of ∆𝑦𝑦𝑡𝑡. 
 
When the cointegrating parameter 𝛽𝛽 is unknown, we may estimate it first and then fit the error 
correction model using the OLS estimator 𝛽̂𝛽 in place of 𝛽𝛽.  This is called the Engle-Granger two-
step procedure. 
 
B4.5.  Multivariate Cointegration Analysis 
In the multivariate case, we consider the k x T matrix 
 

 

𝑌𝑌 = �
𝑦𝑦11 ⋯ 𝑦𝑦1𝑇𝑇
⋮ ⋱ ⋮
𝑦𝑦𝑘𝑘1 ⋯ 𝑦𝑦𝑘𝑘𝑘𝑘

�. 

 
Suppose each row 𝒚𝒚𝒊𝒊 = [𝑦𝑦𝑖𝑖1. . .𝑦𝑦𝑖𝑖𝑖𝑖] of Y represents an 𝐼𝐼(1) process, but certain linear 
combinations of the rows are 𝐼𝐼(0).  We are interested in identifying cointegrating relationships 
among the k time series. 
 
The multivariate extension of the error correction model may be expressed as 
 

∆𝒚𝒚𝒕𝒕 = 𝝅𝝅𝟎𝟎 + Π𝒚𝒚𝒕𝒕−𝟏𝟏 + �Φ𝑖𝑖∆𝒚𝒚𝒕𝒕−𝒊𝒊

𝑝𝑝−1

𝑖𝑖=1

+ 𝜺𝜺𝒕𝒕, 

 
where Π = 𝛼𝛼𝛼𝛼′, 𝛼𝛼 and 𝛽𝛽 are k x r matrices, and Φ𝑖𝑖 is a k x k matrix.  The Johansen multivariate 
formulation assumes that the error terms are independent and identically distributed with 
𝜺𝜺𝒕𝒕~𝑁𝑁𝑘𝑘(0, Σ).  The r columns of 𝛽𝛽 are called the cointegration vectors, and the rank r of 𝛽𝛽 is 
called the cointegration rank.  The parameters in 𝛼𝛼 (which must be negative, like 𝛿𝛿 in the two-
variable case) indicate corrections of short-run deviations from the long-run equilibrium 
relationships defined by the columns of 𝛽𝛽. 
 
Johansen Lambda-Max and Trace Tests 
Based on the normality assumption, the Johansen tests are applied sequentially to help identify 
the cointegration rank r.  If we find that 𝑟𝑟 < 𝑘𝑘, it may be appropriate to remove one or more time 
series from the system.  (If one variable is not cointegrated with any of the others, all values of 
the 𝛽𝛽 matrix corresponding to it will be near 0.) 
 

• Lambda-Max Test 
Using a maximum generalized eigenvalue as a test statistic, we test null hypothesis that 
the cointegration rank r is equal 𝑖𝑖 ∈ {0,1, … , 𝑘𝑘 − 1} against the alternative that 𝑟𝑟 = 𝑖𝑖 + 1.  
We apply the test sequentially starting with 𝑖𝑖 = 0. 

 
• Trace Test 



Using the trace (sum of diagonal elements) of a diagonal matrix of generalized 
eigenvalues as a test statistic, we test null hypothesis that the cointegration rank r is equal 
𝑖𝑖 ∈ {0,1, … ,𝑘𝑘 − 1} against the alternative that 𝑟𝑟 = 𝑖𝑖 + 1. 
 

Applying Multivariate Cointegration Tests to Energy Data 
Johansen’s proof of the validity of the lambda-max and trace tests relies on maximum likelihood 
theory, assuming that the differenced data follow a Gaussian (or normal) distribution.  Because 
this assumption is often problematic for energy data, especially energy price data, Johansen’s 
technique is not used in many analyses performed within EIA.  Seasonality also complicates the 
analysis of monthly data by the vector error correction model. 
 
 


